气体的溶解度与压强、温度的关系

气体的溶解度除与气体本性、溶剂性质有关外,还与温度、压强有关,其溶解度一般随着温度升高而减少,由于气体溶解时体积变化很大,故其溶解度随压强增大而显著增大。

在一定温度和压强下,气体在一定量溶剂中溶解的最高量称为气体的溶解度。常用定温下1体积溶剂中所溶解的最多体积数来表示。如20℃时100mL水中能溶解1.82mL氢气,则表示为1.82mL/100mL水等。关于气体溶解于液体的溶解度,在1803年英国化学家W.亨利,根据对稀溶液的研究总结出一条定律,称为亨利定律。

时间: 2024-09-20 16:33:11

气体的溶解度与压强、温度的关系的相关文章

气体的溶解度与什么因素有关

气体的溶解度与压强和温度这两个因素有关.当压强一定时,气体的溶解度随着温度的升高而减少.这一点对气体来说没有例外,因为当温度升高时,气体分子运动速率加快,容易自水面逸出.当温度一定时,气体的溶解度随着气体的压强的增大而增大.这是因为当压强增大时,液面上的气体的浓度增大,因此,进入液面的气体分子比从液面逸出的分子多,从而使气体的溶解度变大.

气体溶解度与温度的关系

温度越高,溶解度越小. 气体溶解度是指该气体在压强为101kPa,一定温度下,溶解在1体积水里达到饱和状态时的气体的体积.气体溶解度受气体种类.压强.温度等因素影响.如在0℃.1个标准大气压时1体积水能溶解0.049体积氧气,此时氧气的溶解度为0.049.气体的溶解度除与气体本性.溶剂性质有关外,还与温度.压强有关:其溶解度一般随着温度升高而减少.

压强与温度的关系公式

压强与温度的关系公式是PV=NTR,P表示压强,T表示温度,物体所受压力的大小与受力面积之比叫做压强,压强用来比较压力产生的效果,压强越大,压力的作用效果越明显. 温度(temperature)是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度.温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标.

溶解度和溶质质量分数的关系

溶解度和溶质质量分数的关系是:溶质质量分数等于溶质质量与溶液质量之比.溶解度,在一定温度下,某固态物质在100g溶剂中达到饱和状态时所溶解的溶质的质量,叫做这种物质在这种溶剂中的溶解度. 温度(temperature)是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度.温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标.

水的密度与温度的关系

水的密度与温度的关系是: 1.0摄氏度至4摄氏度时,水有一个"热缩冷胀"的特点,即温度越高,密度也就越大: 2.在其余状态下密度随温度的升高而减小: 3.在4摄氏度时密度最大. 水有如下特性高于4度时,热胀冷缩:低于4度时,冷张热缩.不是温度有密度的关系,而是状态与密度的关系正常情况下固体的密度比液体大,液体的密度又比气体大但水是一个反例,水是固体时密度最小.

为什么溶解度会随着温度的升高而变化

大多数固体物质的溶解度随温度的升高而增大,少部分固体溶解度受温度影响不大,极少数物质溶解度随温度升高反而减小,气体物质的溶解度则随温度的升高而降低.多数固体物质的溶解度随温度的升高而增大的原因是:温度升高分子运动速度变快,间隔变大,固体溶解就是固体分子溶于液体分子的过程,液体分子间隔变大,固体溶解多,溶解度升高.

压强与力的关系公式

压强与力的关系公式是压强=压力/受压面积,压强用来比较压力产生的效果,压强越大,压力的作用效果越明显,压强的单位是帕斯卡(简称帕),符号是Pa.压力和压强是截然不同的两个概念:压力是支持面上所受到的并垂直于支持面的作用力,跟支持面面积,受力面积大小无关.

点火线圈和温度有关系吗

点火线圈工作和温度没有关系,只是和点火线圈供电电压有关系. 点火线圈依照磁路分为开磁式及闭磁式两种.传统的点火线圈是用开磁式,其铁芯用0.3毫米左右的硅钢片叠成,铁芯上绕有次级与初级线圈.闭磁式则采用形似Ⅲ的铁芯绕初级线圈,外面再绕次级线圈,磁力线由铁芯构成闭合磁路.闭磁式点火线圈的优点是漏磁少,能量损失小,体积小,因此电子点火系统普遍采用闭磁式点火线圈.

热量和温度的关系公式

热量和温度的关系公式是一定质量的某种物质温度升高或者降低时吸收或者放出的热量.完全燃烧时放出的热量.例如一定质量(m相同)的水(c相同),温度升高△t超高,吸收的热量Q越多. 不同质量(m不同)的水(c相同),温度变化相同(△t相同),质量m多的吸收热量Q多.相同质量(m同),升高相同温度(△t相同),比热容大(c大),吸收热量Q多.Q=qm是一定质量m的燃料,完全燃烧时放出的热量,同一种燃料,燃烧的质量越多,放出的热量越多.